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Abstract—The problem of steady free convection in a porous medium adjacent to a horizontal impermeable
heated surface, with wall temperature distribution T, = T, + Ax*0< 2 <2), for £> 0 and T= T, for
X < 0, is investigated by the method of matched asymptotic expansions. The small parameter in the
perturbation series is found to be theinverse one-third power of the Rayleigh number. For the first-order inner
problem the governing equations reduced to the boundary layer approximations which have been solved
previously. The effects of fluid entrainment, streamwise heat conduction and upward-drift induced frictionare
taken into consideration in the second and third-order theory for which similarity solutions are obtained.
Numerical results for temperature and streamwise velocity profiles as well as the local Nusselt number at
different local Rayleigh numbers and different prescribed wall temperature distributions are presented. It was
found that the local Nusselt numbers as obtained from the boundary layer theory for 2 = 0.5 are accurate to
the third-order, while those for 2 = 0 are accurate to the second-order. For other values of 2, the boundary
layer theory underestimates the local Nusselt number slightly; the accuracy of the boundary layer theory
decreases as the Rayleigh numbers decrease and as 2 increases from 2 = 0.5.

NOMENCLATURE v, dimensionless Darcian velocity in the
A4, constant defined in equation (4b); y-.dxrect‘xon; . )
Ay, A,,..., constants defined in equation (§7a); X, d!mcnSfonless mner ?oordlnate;
B,,B,,..., constants defined in equation (87b); % dfmcnsgonless .coordmate :
C, constant defined in equation (56b); Y, d{mens§onless nner f:oordmate;
¢, constant defined in equation (49); ¥ dimensionless coordinate.
€y,Ca...,  constants defined in equation (37b); Greek symbols
D, constant defined in equation (51a); a, equivalent thermal diffusivity;
SosS1s-os dimensionless perturbation stream s exponent of the perturbation
functions; parameter;
g, acceleration due to gravity; i coefficient of thermal expansion;
go»91,---,  dimensionless perturbation tempera- T, exponent defined in equation (78);
ture functions; 7, exponent defined in equation (37);
h, local heat transfer coefficient; &, perturbation parameter;
K, permeability of the porous medium; 1, similarity variable;
k, thermal conductivity of the porous O, dimensionless inner temperature;
medium; 0, dimensionless temperature;
L, a characteristic length; A, constant defined in equation (49);
m, constant defined in equation (49); 2 constant defined in equation (4b);
Nu,, local Nusselt number; P density of the fluid;
D, pressure; , constant defined in equation (77);
q, local heat transfer rate; I, viscosity of the fluid;
r, radial distance from the origin; Y, dimensionless inner stream function;
Ra,, local Rayleigh number; v, dimensionless stream function.
T, dimensionless temperature; .
U, dimensionless inner variable for SUB erscript . . .
. A .. s dimensionless variables defined
Darcian velocity in the x-direction; .
u, dimensionless Darcian velocity in the cquation (70).
x-direction; Subscripts
V, dimensionless inmer variable for 0, condition at infinity;
Darcian velocity in the y-direction; w, condition at the wall.
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1. INTRODUCTION

THE PREDICTION of convective heat transfer from a
heated impermeable surface in a saturated porous
medium has important applications in the assessment
of geothermal resources and the design of underground
energy storage systems. In a recent paper, Cheng and
Chang[1] obtained asimilarity solution for steady free
convectionin a porous medium adjacent to a heated or
cooled horizontal surface on the basis of the boundary
layer approximations. The analysis neglects the
strcamwise heat conduction and the upward-drift
induced friction within the boundarylayer. In addition,
no account is taken of interactions, such as fluid
entrainment between the outer region and the
boundary layer. The boundary layer approximations
are valid mathematically if the value of the Rayleigh
number approachesinfinity. For most of the convective
heat transfer problems in a sub-surface formation,
however, the valuesof the Rayleigh number are not very
large and the thermal boundary layers are relatively
thick. Thus, for most practical applications, it would be
of great interest to refine the boundary layer analysis to
include the higher-order effects so that results can be
applicable to smaller values of the Rayleigh number.
In the classical viscous flow theory, refinements to
the boundary layer analysis for many problems have
been obtained by the method of matched asymptotic
expansions [2]. For problems of free convection about
an isothermal plate in a viscous fluid, higher-order
approximations based on matched asymptotic expan-
sions have been obtained by a number of investigators
[3-7]. In particular, a higher-order approximation for
frec convection about a horizontal plate in a viscous
fluid has been obtained by Mahajan and Gebhart [6].
In this paper, we shall use the method of matched
asymptoticexpansions tostudy the higher-order effects
for the problem of free convection in a Darcian fluid
adjacent to a horizontal heated impermeable surface
with temperature given by T, = T, + Ax*(with 4 > 0
and0 <2 < 2)forx = 0and T, = T, for % < 0, where
X is the coordinate along the bounding surface with the
y-coordinate perpendicular to the surface and pointing
toward the porous medium with temperature T, at
y— . The purpose of this paper is to extend the
applicability of the boundary layer theory to lower
Rayleigh number ranges. In the following it will be
shown that the perturbation equation for free
convection in a porous medium adjacent to a heated
horizontal surface is a singular one at large Rayleigh
numbers. For the first-order inner problem the
governingequations will be shown to beidentical to the
boundary layer approximations which have been
solved previously [1]. Similarity solutions will be
obtained for the second and third-order inner
problems. Numerical results for temperature and
streamwise velocity profiles as well as the local Nusselt
number at different local Rayleigh numbers and
different prescribed wall temperature distributions will
be presented. For the case of an isothermal wall (2 = 0),

it was found that the local Nusselt numbers as obtained
from the boundary layer theory are accurate to the
second-order, while those for the case of constang
surface heat flux (1 = 0.5), are accurate to the third-
order. For other values of 4, it was found that the
boundary layer thcory underestimates the local
Nusselt number. The accuracy of the boundary layer
theory decreases as 2 is increased from 2 = 0.5.

2. ANALYSIS

If we assume that (i) the convective fluid and the
porous medium arein local thermal equilibrium, (ii) the
properties of the fluid and the porous medium are
constant, (iii) the Boussinesq approximation is
employed, and (iv) Darcy’s law is applicable, the
governing equations in terms of stream function  and
temperature T are [7]

V2 +(p.gfK/WT; =0, (1

UiTi—0:T; = VT )

where p, i, and f are the density, viscosity, and the
thermal expansion coefficient of the fluid; K and « are
the permeability and the equivalent thermal diffusivity

of the saturated porous medium; g is the gravitational
acceleration and lﬁ, the stream function, is defined as

i=y; 6=-ys €)

The boundary conditions for the problem are

§=0, ¥=0 T=T,+A%" (:=0),
yow, P5=0, T=T,.

(4a,b)
(5a,b)

We now introduce the following dimensionless
variables:

=%/L, y=Jy/L, ¥ =y/(@aRa),
0=(T-T,)/AT, (6
where L is a characteristic length, A’i; = AI* and Rais

the Rayleigh number defined as Ra = pgSKAT, L/ux.
The dimensionless velocity components are given by

u=[L/(aRa)]u =y, v=[L/(aRa)]i=—¢,. (7)

In terms of the dimensionless variables, the governing
equations (1){4) become

V3 +0,=0, 8)
V,0,—y,0, = (1/Ra)V?0, (9

with boundary conditions
y=0, ¢¥=0, 0=x* x=0 (10ab)

y—co, ¥,=0, 0=0. (11a,b)

The asymptotic solutions to equations (8)-(11) will
now be sought for large values of Ra (Ra » 1),

The limit of Ra— oo corresponds to exposing the
heated surface in a porous medium saturated with a
non-heat conducting fluid. Thus, there will be no heat
transfer and the temperature distribution will be given



Matched asymptotic expansions for frec convection 165

by
y>0, 0=0, as Ra— oo, (12a)
X, x=0
y=0, 0={(\),’ :<0asRa—>oo. (12b)

Furthermore, since no fluid motion is generated
¥ =0, (13)

In view of equations (12a) and (13), we now write the
straightforward (outer) expansions of { and 0 as

l//(xy}',s) = 52[‘#1()‘,}‘)4‘8‘/’2(",}’)'*' "‘]9
O(x,y,€) = e[0,(x, ) +£0,(x, )+ ...],

when Ra— oo.

(14a)
(14b)

where ¢ = (Ra)™ V3. It follows from equation (14a) that
the outer expansions for the velocity components are

(15a)
t(x,y; ) = e[v,(x, p)+evy(x, )+ ...], (15b)
where u; = ¢Y;/0y and v; = —&y,/ox (i = 1,2,...,N).

u(x,y; &) = e2{uy(x, y) +euy(x, y)+ ...J,

The inner solution

A thermal layer is rcquired to remove the
temperature jump at the heated surface. We thercfore
introduce the following inner expansions:

Y(x,y;6) = E[¥o(X, Y)+e¥,(X, V)
+e2¥ (X, )+ ... +&Y (X, V)], (16a)
0(x,y;8) = Oy(X, Y)+£0(X,Y)
+e20,(X, )+ ... +670,(X,Y) (l6b)
with the inner variables given by
X=x and Y=y/e 17

where'¥,,and O,,are the eigensolutions associated with
the homogeneous equations and boundary conditions
and the a,’s are the corresponding cigenvalues. It will
be shown later in this paper that «,, = 2and 3for2 =0
while no eigenvalue exists for A > 0.1. It follows from
equation (16a) that the inner expansions of the velocity
components are

u(x,y; &) = eLUo(X, Y)+£U,(X, Y)

+2UL(X, V) +...e~U,], (18a)
vx,y;8) = E2[Vo(X, V) +eVi(X, Y)
+E VX, Y)+...eV,]  (18b)

where U; = ¥y, and V; = — W, (i = 1,2,...,N). (19)

Rewriting equations (8) and (9) in terms of inner
variables given by equations (17), and upon
substitution of equations (16), we find the following sets
of inner problems:

The first-order inner problem.

‘Pon"*‘eox =0,
\*’oy@ox—q’o,\‘d’oy = eon-

(20a)
(20b)

subject to the boundary conditions
Y =0, Yo=0, Op=X*

Yoy =0, Op=0.

(21a,b)

Y — oo, (22a,b)

Note that the first-order problem, given by equations
(20)-(22), is exactly the same sct of equations obtained
from the boundary layer approximations [1]. A
detailed examination of equation (20a) implies that
dufdy » dvf/0x (and consequently the vorticity
V3 = éufdy—év/dx ~ éu/dy) which means thatin the
Darcy’s law the upward-drift induced friction term,
10/K, is neglected in comparison with the streamwise
friction term p #i/K to this order. Morecover, equation
(20b) implies that the streamwise heat conduction has
been neglected.
The second-order inner problem.

Wiyy+0,x =0, (23a)
(lpOYOlX_WOXOIY)_*_(\*IIYGOX_\PIX@OY) = Ol}’)’)
(23b)
subject to the boundary conditions

Y=0 ¥, =0 ©,=0, (24a,b)

Y — o0, ¥,y and @, match with the outer solution.
(25a,b)

Thus, to the second-order approximation, the
vorticityisstillequal to du/dy while the streamwise heat
conductionisstillneglected in theenergy equation. The
nonlinear convection terms in equation (23b) are
corrected for both the modified flow and temperature
fields while the boundary conditions, equations (25a)
and (25b), indicate the interaction between the inner
and outer flow fields.

The third-order inner problem.

‘szr‘*‘e_zx = —Yoxn (26a)
(WoyO2x—YoxO2y) +(¥1yOx—¥1xO1y)
+(¥2rOox—¥2xO0r) = Ooxx+O2yy, (26b)
subject to the boundary conditions
Y=0, ¥,=0, 0,=0, (27a,b)

Y - o0, ¥,y and @, match with the outer solution.
(28a,b)

From the above cquations, we observe that the
vorticity term in equation (26a) has been corrected to
include the contribution of dv/dx while the streamwise
heat conduction term has been taken into account in
equation (26b). Moreover, both the convection termsin
the energy equation and the interaction between the
outer and inner flow fields are further modified.

The eigenfunctions ¥,, and O, satisfy the
homogeneous problem given by

leYY + Gm.\’ = 0) (2921)

(Voy@mx—YoxOmy) +(Oox'¥my - O0y¥1x) = Omyys
(29b)
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subject to the boundary conditions
Y=0: ¥,=0 0,=0,
Yoow: ¥,y=0 0,=0

(30a,b)
(31a,b)

. The first-order inner solution. The solution of the
first-order inner problem hasbeen shown by Chengand
Chang [1] to be of the form

o = XUTVRf), (32a)
Qo = X*gs(m), (32b)
n=YxX®%-as (320)

where fo(17) and go(y) are determined from
o +2g0+[(A—2)/3]ngo = 0, (33a)
96— Mogo+[(2+1)/31f090 = 0, (33b)

with boundary conditions given by

90 =1, f(0)=0, (34a,b)
go(0) =0, fo(e0) =0. (35a,b)

It follows from equation (32a) that the velocities are
given by
&Y

Uy == (36a)

— X3 W3,

6%,

V=
° X

= — (X RB2—)nfe—(A+ D).
(36b)

The asymptotic behavior of gg(n) and f,(y) are found
from equation (33) to be of the form

goln) ~ ™ (37a)
Joln) ~ fo(0)+cre” " +cone™™ (37b)

where y = [(2+ 1)/3] fo(o0) with fo(c0) being a positive
constant [1]. Hence, as = o0, we have

Wo ~ XA D31 (0)+0(e™™), (38a)

Oy ~ 0(c™™), (38b)

Up ~ 0e™™), (38¢)

Vo ~ —[(A+1)/3]fo(c0) X3, X > 0. (38d)

Equation (38d) shows that at the edge of the thermal
layer, the vertical velocity is negative. This implies that
fluid is entrained into the thermal layer, i.c. streamlines
are all entering from the outside into the boundary
layer. Note that to the first-order theory, 2 =0.5
corresponds to the case of constant surface heat flux

[1].

The outer solution
By substituting equation (14) into equations (8) and
(9), the following sets of equations are obtained:
First-order outer problem.

olx = Oy
!//lyolx_'?lllxoly =0.

(39)
(40)

Second-order outer problem.

Vzwl-*_olx = 0) (41)
(¢1y02x_l//1x02)‘)+(¢2y01x'_’¢2x01y) = Vzol- (42)
Nth-order outer problem.
VZ‘P,,_1+0,,,=0, (n=23,...,N) 43)
l[’lyonx_!r’/lxony
n—1
=V20n—1— Z ['//n—jn.y jx_'l[ln—j+l.xoj)-]»
i=1
. (n = 2,3,...,N). (44)

The boundary conditions forallorders(n = 1,2,..., N)
are:

y =0, 0, and ¢, match with the inner solutions
at the edge of the thermal layer, (45a)

y=o, 0,=0, ¥, =y, =0 (45b)

Equation(39)showsthat 0, isafunctionof y onlyand
therefore must be equal to zero by equation (45b).
Another more general argument for 8; = 0 is based
onequation (40), which shows that 0, is constant along
any of the first-order outer streamlines /,. As pointed
out earlier the first-order streamlines are entering
the boundary layer and none leaving it, {, may be
originated {rom infinity or form closed loops in the
region outside the thermal layer. Excluding the latter
possibility, all are originated from infinity where
0, = 0. Hence by equation (40) and the infinity condi-
tion 0, =0, we conclude that 0; =0 everywhere.
With 0, = 0, the second order equation (42) reduces to

'jjly02x_lr,/lx02y = Os

from which, by the same argument, we conclude that
0, = Ocverywhere. Hence, by induction, we find thatin
the outer region

0,=0, everywhere for alln (46a)

and
V3, =0 foralln (46b)

In other words, in the outer flow field both temperature
perturbation and vorticity arc exponentially small and
a potential flow prevails. The first-order outer solution
is therefore determined by the equation

Vi, =0,

subject to the infinity condition,, = ¥, = Oand the
matching condition given by equation (38a), i.e.
x =0,

a+1)3
L Z e

Thesolution of equation (47) with boundary conditions
(48) can be shown to be

¥, = —{¢/lim—1r"~}sin[m(r—A)+A] (49)

where r = (x2+y?)'2, A = tan~(y/x), c = [(1 +2)/3]
[foleo)/(sin mn)] and m = (2—2)/3. It follows from

(47)

(48)
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equation (49) that
u; = [c cos m(z—A)J/(r™),
vy = —[c sin m(m—A)]/(r™).

(50a)
(50b)

The second-order inner solution. The governing
equations and boundary conditions for the second-
orderinner problemare givenbyequations(23)and(24)
with the matching condition

-

W
"a—Y‘ (X, 0) = DX®H-23, (S1a)

0,(X, ) =0 (51b)

where D = —[(1+2)/3]cot{[(2+ 1)/3]n} fo(x0). Note
that equations (51) are obtained from equations (50a)
and (46a). It can be shown that the second-order inner
problem admits similarity solutions of the form

¥y = Dfi(n), (522)
0, = DX~ V3g,(y) (52b)

where f,(n) and g,(») are determined from
i +[24-1)/319, +[(A—2)/3]4g) =0, (53a)
g1+ 2+ 1)/3] fogy — (22~ 1)/31 fo9, = 2901, (53D)

subject to the boundary conditions

S1(0)=g,(0)=0, (54a,b)
fi(e0) =1, gy(o0) =0. (55a,b)

Fromequations(51)and (52)itis of interest to note that
Yi(X,Y)=04X,Y)=0 for the special case of
A=0.5, since D=0 for this case. The asymptotic
behavior of g,(n) and f,(1) can be found from equations
(53) and (55) which gives

and fi(m) ~n+C  (56a,b)

where C is a constant (whose value depends on 1) and
can be obtained only after equations (53)(55) have
been solved numerically.

Thus, to this order, the inner expansion for the
stream function is

Y(x,y) = & [Wolx, ) +e¥y(x, V) +...]
= 2[XA* V3L +eDfi() + ... ] (57)
It follows that as 3 — co,
Y(x,y) = e{ X1 (o)
+eD[ XA IBY L+ CY+ ...} (58)

where we have made use of equation (56b). Equation
(58) is to be matched with the outer expansion in the
next section.

Second-order outer solution. The governing equation
for the second-order outer problem is

- o0, gy(n) ~e "

Vi, =0 (59)
with the boundary conditions
DC, x>0 (60a)
0) =
va(x.0 {0, x<0 (60b)
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and the infinity conditions

V2x(x, 0) = Y,(x,0) = 0 (61a,b)

where equation (60a) is obtained by matching with the
inner solution. It is easy to show that the solution to
equation (59) with the boundary conditions (60) and
61)is ’

Wa(x,3) = DC[1—(A/m)] = DC[1—(1/m)tan"*(y/x)].
(62)

Expanding equation (62) for small y, we have
Yalx,y) = DCL1-(1/m)(y/x) + .. ]
= DC[l—(e)f'/nX) 4+ ... (63)
Thus the velocity u (as y — 0) to the second order is
u = e2[u,(x, y) +euy(x, )+ ..]
= —&[(A+ 1)/3]cot{[(2+1)/3]m} fo(oo)x* =23
+e*{[(2+ D2~ /9] fo(e0)x* =Y

—(DC/n)(1/x)} + O(?). (64)

The third-order inner solution. The third-order inner
solution, as determined from equations (26) and (27)
must also satisfy the matching condition at Y — oo

0,-0, (65a)

U,= a\*;’z = [(1+).)(2——}_)f0(w)yx(l—5)/3/9]

—(DC/n)(1/X) (65b)

where equation (65b) is obtained by matching with
equation (64). Equations (26) with the boundary
conditions (27) and (65) admit similarity solutions of
the form

¥, = X"4TOR0a), (66a)

0, = XU M3g,(n) (66b)

where n is the similarity variable given by equation
(32c¢), and f,(1) and g,(y) are determined from

7 +[(2—-2)/3)(g, +ng%)
= —[(2=2/31{[(A+1)/3] fo+(A—)nf3

+[(2—2/310%5}, (67a)
g5+ 30+ Dfogs — (2= 2 f39,]
—2290— (1 +2)/31 /290 = A(1—-2)go
+ (1 —22)(2—2)/31ngo— [(A—2)/3)*nlgo +ngs
+[(2A—1)/3][(1 + 2)/3]?
x cot? {[(2+1)/3]n} fF(=0) fi91, (67b)
subject to the boundary conditions
n=0: f,=0, g,=0, (68a,b)
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n— o0 f; = [(1+ (2~ 2)/9] fo(co)n~(DC/m);
g, =0. (69a,b)

Eigenvalues and eigenfunctions
In this section, we shall obtain the eigenvalues «,, and
the eigenfunctions ¥, and ©,,. To thisend, we note that
the parameter Ra in equations (8)-(11) is an artificial
parameter that can be eliminated from the mathe-
matical problem by the following transformation:
Y=, 0=gHNAN] (70a,b)
3/A+ 1) 5

5 (70c,d)

where & = (1/Ra)'’. In terms of the new variables,
equations (8)-{11) become

x=gMithg  yg

V3 +0;=0 (M)
U50:— 05 = V20 (72
with boundary conditions given by
§=0: Yy=0, 0=%x* =20, (T3ab)
yjoow: Y;=0 F=0. {74a,b)

An inspection of equations (71)74) shows that the
parameter & (or Ra) is completely eliminated from the
problem. In other words, we have

¥ =¥(%75), (75)
0= 0%, ). (76)

which imply that the parameter ¢ should not appear in
the solution when it is expressed in terms of the new
variables. Thisis the so-called “eliminability principle”.

We now consider the terms £**2y,, and ¢0,, in
equations (16). These terms can be considered at
present to be the typical terms in the series expansions.
We assume that these terms are of the following
similarity forms:

gmt Y = grmt2y0f (1) a7

(78)

where 5 = x*~2¥3y/e and ¢ and I are constants to be
determined. According to the eliminability principle,
equation (16)interms of,0, £and yshould not contain
the parameter ¢. We first note that the similarity
variable # in terms of X and y becomes

0, = exTg,(n)

n = xA-a35 9

where ¢ indeed disappears. Next, we rewrite the series
(16a,b) in terms of ¢, J, ¥ and ¥ to give

mt+2 —
e ="y — .
8"" +2+[3g) A+ l)]xafm(”))

SHAHNG = | gm0, = ...

gim +[3r(A+ l)]:zl‘

g1 (80b)

The parameter ¢ will not appear in the above equations
if

(80a)

3 =0a,+24+[3c/(2+1)], (81)

3M(A+1) = o, +[3T/(A+1)]. (82)

Solving equations (81) and (82), we have
o = (1—a,)(A+1)/3, (83)
I'=2—-[(1+})2,/3]. (84)

Thus, typical terms in the series of equation (16a) and
(16b) are given by

Y, = (a3

A=[(2+ Dam/3
0, = x*7 I D-Blg ).

(83)
(86)
Letting o,, = 0, 1, and 2, in equations (85) and (86), a
linear combination of these terms gives,
¥ = &2 [Aox** o) +eA, f1(n)

+e2 A, xATURLG) + .

+ A, e x(A720AY OB (i + ], (87a)

0 = [Box*go(n)+eB,x*~3g, ()

+e2B, x4 Mg, )+ ...

+ B et T DBl (4 ] (87h)

where Ao, A, B, and B,, are constants to be
determined. Note that the first three terms in equations
(87) agree with equations (29), (49), and (63)if A, = A,
= B, =B, =1 and A, = B; = D. The constants 4,,
and B, in equations (87) cannot be determined
presumably due to the leading edge effects.

Substituting equations (77) and (78) with ¢ and T
given by equations (83) and (84) into equations (29}
(31), we have the following eigenvalue problem:

m+{2—[(2+ 1)2,/31}g.+ (2 —2)/31ng,, = O,
g+ [+ D/3) fogn— {212+ Dx,/31} 59
—2go fu— [t —1)(A+1)/31go frn =0 (89)

subject to the boundary conditions

10) = g.,(0) =0, (90a,b)
So{0) = gn(0) = 0. (91a,b)

As in the classical boundary layer theory it will now be
shown that ¥,/0X and é0y/0X or 6¥,/dY and
60,/0Y satisfy equations (29) and thus are the eigen-
functions, provided that they also satisfy the boundary
conditions (30) and (31). For this reason, we first
differentiate equations (20) with respect to X and
find that the resulting equations are identical to
equations (29) if

(83)

o'V
Wy = 22 = XU DB+ 1731
+O-2/30 S5} ©20)
=20 o XA ) = 23T} O2b)

Comparing equations (92) with equations (85) and (86),
one obtains

%, = 3+ 1), (93a)
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S = [A+ D316+ L2 -2)/31f50n),  (93b)
In= 29000+ [(2—2)/31ng5(). (939

Equations (93a,b) satisfy boundary conditions (90) and
(91) only when A=0. Thus, when 2=0, the
eigenfunctions and eigenvalues are

W, = X7 2P(foln)/3)—3nfc(0)], (%4a)
©,, = X" '[—3ngs], (94b)
%, = 3. ©3)

Similarly, it can be shown that although 6'¥,/0Y and
¢O,/0Y satisfy equations (29), they do not satisfy
boundary conditions (30) and (31) and thus are not
eigenfunctions of the problem. Other eigenvalues and
eigenfunctions must be found by the numerical
integration of equations (88)-(91).

Results and discussion

Numerical solutions for the eigenvalue problem
given by equations (88}91) were carried out for 2 = G,
0.1, 0.5, 1.0 and 1.5. It was found that for 2 =0, two
eigenvalues with «,, = 2 and 3 exist. This implies that
the third-order problem for this case contains an
indetermined constant due to the leading edge effects.
The numerical solutions also found that no other
eigenvalues exists for 2> 0.1. Thus, for 1=0,
numerical solutions were carried out only to the
second-order while for other values of A, numerical
solutions were carried out to the third-order. The
results for gi(0) and £;'(0) (with i = 0, 1, 2) and f(c0) for
selected values of 2 are tabulated in Table 1 for future
reference. The discussion of the first-order (boundary
layer) results has been presented in the previous work
[1] and will not be repeated here.

The second-order theory. The variations of g,, g3, /3
and f] versus 5 at different 2 are presented in Figs. 1-4.
Note that for the special case of A = 0,the second-order
equation and boundary conditions for g, as given by
equations (53b), (54b) and (55b) become a linear
homogeneous problem whose exact solution is

g1=0 and ¢, =0. (96a,b)
It follows from equation (53a), (54a), and (55a) that
fi=1 and fi=1. (97a,b)

Comparing equation (97b) with equation (56b), one
can conclude that C = 0 for 2 = 0. Equations (96) and
(97a) are shown as horizontal lines in Figs. 1, 2 and 4

24

20

gxﬂ 5

FIG. 1. g, versus n at selected values of L.
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F1G. 2. g) versus n at selected values of 2.

A0
- x0T

A:=05

Fi1G. 3. f] versus 5 at selected values of 4.

Table 1. Values of gi{0), £{(0) and f(c0)

=0 =01 =05 i=10 =15
44(0) —04299  —05262  -08164  —1.099 —1.345
7,(0) 0 —0.1165  —03154  —04207  —04735
FR0) —02281 0 0.2274 0.9424
£(0) 1.053 1.064 1.141 1.251 1.354
[0 1.0 09108 0.7413 0.6182 0.5257
140) —007617 0 0.2292 0.6908
fo(0) 2813 2.529 1.885 1.502 1.284
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FI1G. 4. f] versus n at selected values of 2.

whileequation (97b)is shown as a straight line in Fig. 3.
Note that equations (96) imply that the second-order
corrections in temperature and heat flux are zero for
2 = 0 because to the second order approximation, the
correction to the temperature, @, is solely due to the
convection effect as represented by the forcing term

\PIYOOX_\FIXG)OY

in equation (23b). When 2 =0, O, and ¥, are both
constant along the curves n = constant [see equations
(32b) and (52a)], and hence the above convection term
vanishes. This, coupled with the boundary conditions
©,; =0atY = 0[equation{24)]and®, - 0,as Y — 0
[equation (51b)] leads to the result that ©, = 0 for
A=0.

Asdiscussed earlier, the second-order corrections for
the stream function and temperature, ‘¥, and ©,, are
also zero for 2 = 0.5 since D = 0. For completeness,
however, the values of g,, ¢}, f, and f] as determined
from equations (53)+55) for A = 0.5 are also plotted in
Figs. 1-4, although they are of no physical significance.
For other non-zero value of 2, Figs. 1 and 2 show that
the second-order corrections in temperature and its
slopeat the wall are all negative while Figs. 3and 4 show
that the values off; and ] are all positive withf, varying
linearly with s as # — oo asindicated by equation (56b).

The third-order theory. Figures 5-8 show the third-
order corrections, ¢,, g5, f> and f; versus s for 2 = 0.1,

o
ey o
b=
o
v
o
~|
x|
0|
&S

F1G. 5. g, versus i at selected values of A.

12

08
04
g’

0
-04
-08 | 1 | H 1 1 {

o} 1 2 3 4 5 [ 7 8
m

F1G. 8. f; versus y at selected values of L.

0.5,1.0and 1.5. As shown in Fig. 5, the values of g, may
be positive or negative depending on the values of 2 and
n. Figure 6 shows that g50)<0 for 2 <05,
and g5(0) > 0 for 2 > 0.5. For 2 > 0.5, the values of /;
and f; are all positive as shown in Figs. 7 and 8. Note
that f; increases linearly with 5 as 5 — oo (see Fig. 8}
which is dictated by the boundary condition (69a).
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FiG. 9. Dimensionless horizontal velocity profiles for 2 = 0.1: (a) Ra, = 50 and (b) Ra, = 200.

Higher-order corrections for the velocity field. With
the aid of equations (16a), (29a), (52a) and (66a), the
inner expansion for the stream function is given by
50, y) = (/e ){ foln) — e[+ 1)/3] cot [n(A+ 1)/3]

x foloo)fim+e2 ol +0(e3)}  (98)
where &, = Ra; ' with Ra, = pgBK(T,— T, )%/ux
denoting the local Rayleigh number. It follows that the
horizontal velocity is
{/otm) —e,[(2+1)/3]cot [n(2+1)/3]

(o) fi(n) +e2 f3(m)+ 0D} (99)

Equations (98) and (99) are for A > 0.1. For 2 < 0.1,
the third-order terms in these equations contain an
undetermined constant as discussed earlier. Since
fi(n) > 0 and fy(c0) > O, the second-order correction

g2uxfo =

inuiszerofor A = 0.5, negative for 2 < 0.5and positive
for 2> 0.5. On the other hand, the third-order correc-
tions in u are almost always positive except for small
and 2 < 0.5.

Figures 9(a) and 9(b) show the representative
horizontal velocity profiles for 4 < 0.5 at two different
Rayleigh numbers, as obtained from the first, second,
and third-order theories. For the second-order theory,
the horizontal velocity decreases from a positive value
atthewall(i.e.a velocityslip)and approaches a negative
value at the edge of the boundary layer. A comparison
of Figs. 9(a) and 9(b) indicates that the boundary layer
approximations become increasingly accurate as the
value of Ra, is increased. The representative horizontal
velocity profilesfor 2 < 0.5are presented in Fig. 10. The
major difference between this figure and Fig. 9 is that
thehorizontal velocity at theedge of the boundarylayer

8 T 8 l
I ! (o) X1, Roe: 50 ,' (b) X=1, Ra,=200
7 i 7k ‘ |
| |
: ! H
o l ] 6| ‘ |
| Boundary Layer Theory I Boundary Layer Theory
st | | —— 2nd Order Theory 5 | | —-—  2nd Order Theory
n \ { ——— 3rd Order Theory \|‘ ——— 3rd Order Theory
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\
2+ O\ 2
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| .
0 02 04 06A . 08 10 12 14 0 02
XeZ
Q

FiG. 10. Dimensionless horizontal velocity profiles for 2 = 1:(a) Ra, = 50 and (b) Ra, = 200.
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obtained from the second-order theoryin this figure are
positive rather than negative as in Fig. 9.

Higher-order corrections to temperature and heat
flux. With the aid of equations (32b), (52b), (66b) and
(16b), the inner expansion for temperature is

(T‘_ Toc)/(TW - T@)
= golm—e&,[(2 + 1)/3]cot[=(2 + 1)/3]
% fo(00)g, () +€2g,(m) + 0(2)(0.1 < A < 2) (100)

which is plotted in Figs. 11(a) and 11(b) for Ra, = 50
with 2 = 0.1 and 2 = [ respectively. Itis shown that all
higher-order corrections in temperature are small even
at small value of Rayleigh number.

The Nusselt number Nu, = hx/k can be obtained
from the differentiation of equation (100) which yields

Nu /(Ra}y = —{go(0)—e,[(2+1)/3]
x fo(eo)cot[n(4+ 1)/3]191(0)
+e295(0)+0(ED}. (101)

Equation (101) was computed for various local
Rayleigh numbers and /2, and the results are given in

{a) A= 01, Ro,:50
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FiG. 11. Dimensionless temperature profiles at Ra, = 50:
(@)i=01land(b)Z=1.
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Boundary Layer Theory

. =— Second Order Theory
== — — Third Order Theory

1 1 1 1 1 1 1
30 20 50 60 100 200 300 400 500

F1G. 12. Local Nusselt numbers versus local Rayleigh numbers
for selected values of 2.

‘Table 2 for future reference. It is noted from the table
that for the case of 2 = 0, the first (boundary layer) and
second-order theories give identical results for the local
Nusselt number because of the fact that g, = g7 = 0.
For the case of A = 0.5, all three theories give identical
results for the local Nusselt number because cot[7/2]
= 0 and g5(0) = 0. For other values of 2, the value of
Nu, obtained from the second-order theory may be
higher than or lower than the boundary layer theory
depending on whether 2 > 0.5 or 2 < 0.5, because the
second term in equation (101) changes signs at A = 0.5.
On the other hand, the value of Nu, obtained from the
third-order theory is always higher than the boundary
layer theory. A comparison of Nusselt numbers
obtained from the first,second and third-order theoryis
presentin Fig. 13, which shows that the boundary layer
theory is quite accurate even for moderate values of
Rayleigh number ; the accuracy of the boundary layer
theory decreases as the Rayleigh number is decreased,
and as 2 is increased from A = 1.

3. CONCLUSIONS

The following general conclusions can be drawn
from the analysis:

(1) There arein general three effects contained in the
higher order approximations, namely, fluid entrain-
ment, upward-drift-induced frictional force, and
streamwise heat conduction. The resultant effects are a
slight increase in the slope of the temperature profile
near the wall (with a corresponding increase in surface
heat flux) and a modification of the velocity near the
edge of the boundary layer where the velocity of the
inner flow matches with those of the outer flow.
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(2) The temperature perturbation inside the boun-
dary layer decays exponentially toward the outer edge
of the layer. There is no heat transfer between the
boundary layer and the region outside the boundary
layer. An isothermal fluid motion is induced, however,
in the outer region.

(3) Thesole interaction between the boundary layer
and the outside region is by way of fluid entrainment.
The entrainment is from the outside into inside the
boundary layer along the edge of the boundary layer.

(4) The temperature distribution inside the boun-
dary layer is modified by the convection of the
entrainmentinduced flowin the second and third-order
theory, as well as by the streamwise heat conduction in
the third-order theory.

(5) The higher-order theory has a larger effect on
velocity profiles and a smaller effect on temperature
profiles.

(6) Thelocal Nusselt numbers as obtained from the
boundary layer theory for A = 0.5 are accurate to the
third-order while those for 2 = 0 are accurate to the
secand-order. For other values of 2, the boundary layer
theory also gives accurate results for the local Nusselt
numbers even at moderate values of Rayleigh numbers.
Theaccuracy of the boundary layer theory decreases as
the Rayleigh numbers decrease and as A increases from
2=05.
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DEVELOPPEMENTS ASYMPTOTIQUES POUR LA CONVECTION NATURELLE PRES
D'UNE SURFACE HORIZONTALE ET IMPERMEABLE DANS UN MILIEU POREUX

Résumé— Le probléme de la convection naturelle stationnaire dans un milieu poreux adjacent a une surface
chaude, horizontale et imperméable, avec une distribution de température pariétale T, = T + Ax* pour %
>0et T, =T, 4% <0(0 <2< 2),est étudit par la méthode des développements asymptotiques. Le petit
paramétrc dans les séries de perturbation est linverse de la puissance un tiers du nombre de Rayleigh. Pour le
premier ordre du probléme interne, les équations de base se réduisent aux approximations de la couche limite
qui a déja été résolue par les auteurs. Les effets de 'entrainement du fluide, de la conduction thermique et du
frottement induit sont pris en considération dans la théorie du second et du troisiéme ordre pour laquelle on
obtient les solutions de similarité. On présente les résultats numériques pour les profils de température et de
vitesse et pourlenombre de Nusselt local d différents nombres de Rayleighlocaux et différentes distributionsde
température pariétales données. On trouve que les nombres de Nusselt locaux obtenus par la théorie de Ia
couche limite pour A = 0,5 sont précis jusqu’au troisiéme ordre, tandis que ceux pour 2 = 0 sont précis au
second ordre. Pour d’autres valeurs de 4, la théorie de couche limite sous-estime 1égérement le nombre de
Nusselt local; Ia précision de la théorie de couche limite décroit lorsque le nombre de Rayleigh diminue et
lorsque 4 croit au dessus de 0,5.

ANGEPASSTE ASYMPTOTISCHE ENTWICKLUNGEN FUR DIE FREIE KONVEKTION
UBER EINER UNDURCHLASSIGEN WAAGERECHTEN OBERFLACHE IN EINEM
POROSEN MEDIUM

Zusammenfassung—Der Mechanismus der stationdren freien Konvektion in einem pordsen Medium iiber
einer waagerechten undurchlassigen Heizflache mit der Temperaturverteilung T, = T+ A%*(0 < 2 < 2)fiir
x20und T, = T, fiir x < 0 wird mit Hilfe der Methode der angepaﬁten asymptonschen Entwicklungen
untersucht. Es wi urde herausgefunden, daB der kleine Parameter in den Stdrungsreihen umgekehrt
proportional der Rayleigh-Zahl hoch ein Drittel ist. Fiir das innere Problem erster Ordnung sind die
kennzeichnenden Gleichungen auf die Grenzschichtndherungen zuriickgefiihrt, die kiirzlich von denselben
Autoren geldst wurden.

Die Einfliisse des Entrainments, der Warmeleitungin Stromungsrlchtung und der durch die Aufwértsdrift
hervorgerufenen Reibung “crden in der Theorie zweiter und dritter Ordnung beruckswhtlgt fur die sich
Ahnlichkeitslosungen ergeben. Fiir das Temperatur- und Geschwindigkeitsprofil in Strémungsrichtung
werden numerische Ergebnisse vorgestellt, ebenso {ir die 6rtliche NuBeltzahl bei verschiedenen &rtlichen
Rayleigh-Zahlen und unterschiedlichen aufgeprigten Wandtermperaturverteilungen. Es zeigt sich, daf die
mit der Grenzschichttheorie fiir 2 = 0,5 erhaltenen &rtlichen Nufleltzahlen mit denen der dritten Ordnung
tibereinstimmen, wihrend diejenigen fiir 2 = 0 mit denen der zweiten Ordnung fibereinstimmen. Fiir andere
Werte von Z ergibt die Grenzschichttheorie geringfiigig zu kleine drtliche NuBelt-Zahlen ; die Genauigkeit der
Grenzschichttheorie nimmt in dem MabB ab, wie die Rayleigh-Zahl kleiner und wie 2 von 2 = 0,5 an groBer

wird.

CPAUIMBAEMBIE ACMMIITOTUYECKHE PA3JIOXXEHUSA [JiA CBOBOJHOH
KOHBEKLUHHU ¥ HEMNPOHHIIAEMOH I'OPU3OHTAJILHOH IMOBEPXHOCTH
B [IOPUCTOU CPEAE

Annotauws —3anaya crausonapnoii csobonnoii KoHBeKUMH B nopucmﬁ cpeae y ropH3OHTANbHOI
HenpoHunaeMoii HarpeBacMoii NOBEPXHOCTH, xapaxrepmylomencx pacnpefeieneM TeMmnepatyp
Tu=T,+A* 0<i<2)npu x20u T, =72 nph X <0, neccnenyercs METONOM CpPaulHBaeMblX
aCHMNTOTHYECKHX pa3noxkenui. Haiineno, yto Maneli napamerp paBeH obpaTHomy uucay Panes B
ctenenn 1/3. lns BuyTpeHHeit 3anaqu MepBoro NOpsaka OCHOBHBIE YPaBHEHHA CBOAATCH K mpHOmitke-
HHAM NOTPAHHYHOIO C104, KOTOPLIC pelleHbl aBTOPaMH paHee. YBIeHCHHE XKHAKOCTH, Tenjaonepeaaya
NO HanpasicHHIO TEYCHHA M TPEHHE, BHI3BAHHOE HANpaBiIeHHBIM BBEPX ApeiidoM, yYyHTBIBAIOTCH
32BHCHMOCTAMH BTOPOrO M TPETLErO NOPANKa, AN KOTOPHLIX MOJY4YEHbl ABTOMOICIBHbIC PELICHHS,
TipeacTaBsriensl YHCAEHHBLIE PE3YNbTATH MO NPodIUIAM TEMNEPaTyp H CKOPOCTH IO HaNpaBICHRIO
TeYeHus, a Takke JokanbHOMy uicay HyccenbTa NpH pa3fanyHBIX 3HAYEHHAX JIOKANBLHOrO 4mcaa
Pares # pasnauynelX 3aMaHHBIX pacnpenc/icHHAX Temnepatyp creHkd. Haiiaeno, 4ro 3HayeHus
stoxanbHoro uyicna HyccensTa, monyueHHsle M3 TEOPHH NOrPaHHYHOIO C€J10%, SBIAAIOTCH TOYHBIMH [0
TpeTbero nopsaxa npu 4 = 0,5 i 1o BToporo nopsanka npu 4 = 0. [Ipu aApyrux 3HaYeHHsX 4 noay4yaoTcs
HECKOJILKO 3AHIUKEHHBIE 3HAYEHMA JloKanbHoro uucaa HyccenbTa; TOYHOCTL TEOPHH NOrPAHHYHOIO
€108 YMEHBIMIAETCS N0 MEPe yMeHbUIEHHS Yucaa Panes i ysennyenns 4 souue 0,5,



