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Abstract--The problem ofsteady free convection in a porous medium adjacent to a horizontal impermeable 
heated surface, with wall temperature distribution 7"w = 7"~+A~a(0 ~< 2 < 2), for .'~/> 0 and i"= 7"~ for 

< 0, is investigated by the method of matched asymptotic expansions. The small parameter in the 
perturbation series is found to be the inverse one-third power of the Rayleigh number. For the first-order inner 
problem the governing equations reduced to the boundary layer approximations which have been solved 
previously. The effects of fluid entrainment, streamwise heat conduction and upward-drift induced friction are 
taken into consideration in the second and third-order theory for which similarity solutions are obtained. 
Numerical results for temperature and streamwise velocity profiles as well as the local Nusselt number at 
different local Rayleigh numbers and different prescribed wall temperature distributions are presented. It was 
found that the local Nusselt numbers as obtained from the boundary layer theory for 2 = 0.5 are accurate to 
the third-order, while those for 2 = 0 are accurate to the second-order. For other values of 2, the boundary 
layer theory underestimates the local Nusselt number slightly; the accuracy of the boundary layer theory 

decreases as the Rayleigh numbers decrease and as 2 increases from 2 = 0.5. 

N O M E N C L A T U R E  1;, 

A, constant defined in equation (4b); 
A I , A 2 , . . . ,  constants defined in equation (87a); X, 
BI,B2,.. . ,  constants defined in equation (87b); x, 
C, constant defined in equation (56b); Y' 
c, constant defined in equation (49); Y' 
cl, c2,..., constants defined in equation (37b); 
D, constant defined in equation (51a); ~, 

f o , f l  . . . .  , dimensionless perturbation stream ~,,, 
functions; 

g, acceleration due to gravity; fl, 
go, if1,---, dimensionless perturbation tempera- F, 

ture functions; y, 
h, local heat transfer coefficient; e, 
K, permeability of the porous medium; q, 
k, thermal conductivity of the porous O, 

medium; 0, 
L, a characteristic length; A, 
m, constant defined in equation (49); 2, 
Nu~,, local Nusselt number; p, 
p, pressure; a, 
q, local heat transfer rate; It, 
r, radial distance from the origin; q', 
Ra~, local Rayleigh number; ~, 
T, dimensionless temperature; 
U, dimensionless inner variable for Su_perscript 

Darcian velocity in the x-direction ; 
u, dimensionless Darcian velocity in the 

x-direction; Subscripts 
V, dimensionless inner variable for oo, 

Darcian velocity in the y-direction; w, 

dimensionless Darcian velocity in the 
),-direction ; 
dimensionless inner coordinate; 
dimensionless coordinate; 
dimensionless inner coordinate; 
dimensionless coordinate. 

Greek symbols 
equivalent thermal diffusivity; 
exponent of the perturbation 
parameter; 
coefficient of thermal expansion; 
exponent defined in equation (78); 
exponent defined in equation (37); 
perturbation parameter; 
similarity variable; 
dimensionless inner temperature; 
dimensionless temperature; 
constant defined in equation (49); 
constant defined in equation (4b); 
density of the fluid; 
constant defined in equation (77); 
viscosity of the fluid; 
dimensionless inner stream function; 
dimensionless stream function. 

dimensionless variables defined in 
equation (70). 

condition at infinity; 
condition at the wall. 
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I. INTRODUCTION 

TIlE PREDICTION of convective heat transfer from a 
heated impermeable surface in a saturated porous 
medium has important applications in the assessment 
of geothermal resources and the design of underground 
energy storage systems. In a recent paper, Cheng and 
Chang [1] obtained a similarity solution for steady free 
convection in a porous medium adjacent to a heated or 
cooled horizontal surface on the basis of the boundary 
layer approximations. The analysis neglects the 
streamwise heat conduction and the upward-drift 
induced friction within the boundary layer. In addition, 
no account is taken of interactions, such as fluid 
entrainment between the outer region and the 
boundary layer. The boundary layer approximations 
are valid mathematically if the value of the Rayleigh 
number approaches infinity. For most of the convective 
heat transfer problems in a sub-surface formation, 
however, the values of the Rayleigh number are not very 
large and the thermal boundary layers are relatively 
thick. Thus, for most practical applications, it would be 
ofgreat interest to refine the boundary layer analysis to 
include the higher-order effects so that results can be 
applicable to smaller values of the Rayleigh number. 

In the classical viscous flow theory, refinements to 
the boundary layer analysis for many problems have 
been obtained by the method of matched asymptotic 
expansions [2]. For problems of free convection about 
an isothermal plate in a viscous fluid, higher-order 
approximations based on matched asymptotic expan- 
sions have been obtained by a number of investigators 
[3-7]. In particular, a higher-order approximation for 
free convection about a horizontal plate in a viscous 
fluid has been obtained by Mahajan and Gebhart [6]. 

In this paper, we shall use the method of matched 
asymptotic expansions to study the higher-order effects 
for the problem of free convection in a Darcian fluid 
adjacent to a horizontal heated impermeable surface 
with temperature given by "F,, = "I;o + A i  a (with A > 0 
and0 ~<.2 < 2) for.~ 1> 0and "1",, = ~"~o for.~ < 0,where 
.~ is the coordinate along the bounding surface with the 
y-coordinate perpendicular to the surface and pointing 
toward the porous medium with temperature ~'~o at 
3~--, oo. The purpose of this paper is to extend the 
applicability of the boundary layer theory to lower 
Rayleigh number ranges. In the following it will be 
shown that the perturbation equation for free 
convection in a porous medium adjacent to a heated 
horizontal surface is a singular one at large Rayleigh 
numbers. For the first-order inner problem the 
governing equations will be shown to be identical to the 
boundary layer approximations which have been 
solved previously [1]. Similarity solutions will be 
obtained for the second and third-order inner 
problems. Numerical results for temperature and 
streamwise velocity profiles as well as the local Nusselt 
number at different local Rayleigh numbers and 
different prescribed wall temperature distributions will 
be presented. For  the case of an isothermal wall (2 = 0), 

it was found that the local Nusselt numbers as obtained 
from the boundary layer theory are accurate to the 
second-order, while those for the case of constant 
surface heat flux (2 = 0.5), are accurate to the third- 
order. For other values of 2, it was found that the 
boundary layer theory underestimates the local 
Nusselt number. The accuracy of the boundary layer 
theory decreases as ). is increased from ). = 0.5. 

2. ANALYSIS 

If we assume that (i) the convective fluid and tile 
porous medium are in local thermal equilibrium,(ii) the 
properties of the fluid and the porous medium are 
constant, (iii) the Boussinesq approximation is 
employed, and (iv) Darcy's law is applicable, the 
governing equations in terms of stream function ~ and 
temperature "I" are [7] 

9~r + ( p + ~ / 3 K / ~ ) ~  = 0, (l) 

~yT~-~% = a ~ 2 ~ "  (2) 

where p~,/~, and fl are the density, viscosity, and the 
thermal expansion coefficient of the fluid; K and a are 
the permeability and the equivalent thermal diffusivity 
of the saturated porous medium; g is the gravitational 
acceleration and ~, the stream function, is defined as 

,, = ,~;, o = - q ; .  (3) 

The boundary conditions for the problem are 

p = 0, ff = 0, '7" = ~'~o+.,1.~ a, (2 >/0), (4a,b) 

.~ --. oo, ff~ = 0, 7" = 7"=. (5a,b) 

We now introduce the following dimensionless 
variables : 

x = :+/L, y = ~ /L ,  0 = ff/(:~Ra), 

0 = (7"- "7~)/A7; (6) 

where L is a characteristic length, AT, = AD, and R a  is 
the Rayleigh number defined as R a  = p |  

The dimensionless velocity components are given by 

u = [L/( ,vRa)]l i  = ~k~., v = [L / (~Ra)]O = --t~,,. (7) 

In terms of the dimensionless variables, the governing 
equations (1)-(4) become 

V2~, + 0~ = 0, (8) 

OrOx--O~Oy = ( I / R a ) V 2 0 ,  f9l 

with boundary conditions 

y = 0 ,  0 = 0 ,  O = x  ~, x > ~ O  (10a,b) 

y ~ o o ,  0 r = 0 ,  0 = 0 .  (lla,b) 

The asymptotic solutions to equations (8)-(11) will 
now be sought for large values of R a  ( R a  >> l), 

The limit of R a  -~ oo corresponds to exposing the 
heated surface in a porous medium saturated with a 
non-heat conducting fluid. Thus, there will be no heat 
transfer and the temperature distribution will be given 
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by 

y > 0 ,  0 = 0 ,  a sRa - - , oo ,  (12a) 

~x ~, x >/0 
y = 0 ,  0 = / 0 ,  x < 0  asRa--.oo.  (12b) 

Furthermore, since no fluid motion is generated 

= 0, when Ra --* oo. (13) 

In view of equations (12a) and (13), we now write the 
straightforward (outer) expansions of ~, and 0 as 

t~(x,y,e) = t;2[r - . . .],  (14a) 

O(x,y,e) = e[01(x,y)+eO2(x,y)+ . . .],  (14b) 

where ~ - (Ra)- l/a. It follows from equation (14a) that 
the outer expansions for the veIocity components are 

u(x,y;e) = e2[tq(x,y)+eu2(x,y)+ . . .],  (15a) 

v(x,y;e) = e.2[vt(x,y)+ev2(x,y)+ . . .],  (15b) 

where ui = 0~tgy  and v i = - d , ~ 0 x  (i = 1,2 . . . . .  N). 

The inner solution 
A thermal layer is required to remove the 

temperature jump at the heated surface. We therefore 
introduce the following inner expansions" 

~(x,y;  ~) = ~2[q'o(X, Y)+~q'I(X, Y) 

�9 -~21tt32(X , Y)-~ . . .  -I-e~tmL~im(X , Y)'], (16a)  

O(x, y; r.) = (9o(X, Y) + ~(9 I(X, Y) 

+e2(92(X , Y)+ ... +e"(9,,(X, Y) (16b) 

with the inner variables given by 

X = x  and Y=.v/e (17) 

where q',, and (9,. are the eigensolutions associated with 
the homogeneous equations and boundary conditions 
and the ct,'s are the corresponding eigenvalues. It will 
be shown later in this paper that ct,, = 2 and 3 for 2 = 0 
while no eigenvalue exists for ). > 0.1. It follows from 
equation (16a) that the inner expansions of the velocity 
components are 

u(x,y;~) = ~[Oo(X, Y)+eUI(X, Y) 

+e.2U2(X, Y)+ ...e=~U,,], (18a) 

v(x,y;c) = e2[Vo(X, Y)+tVI(X, Y) 

+e2V2(X, Y)+ ...t"V,,,] (18b) 

where U i = Wit, and V i = - q ' t x  (i = 1,2 . . . . .  N). (19) 

Rewriting equations (8) and (9) in terms of inner 
variables given by equations (17), and upon 
substitution of equations (16), we find the following sets 
of inner problems: 

The first-order im2er problem. 

qJorr + (9ox = 0, (20a) 

qJorOox--Woxddor = Oorr, (20b) 

subject to the boundary conditions 

Y = 0, q'o = 0, Oo --- X ~, (21a,b) 

Y--* oo, q'or = 0, O o = 0. (22a,b) 

Note that the first-order problem, given by equations 
(20)-(22), is exactly the same set of equations obtained 
from the boundary layer approximations [1]. A 
detailed examination of equation (20a) implies that 
att/dy >> Ov/dx (and consequently the vorticity 
V2~ - Ou/Oy-- dv/Ox " Ou/Oy) which means that in the 
Darcy's law the upward-drift induced friction term, 
it O/K, is neglected in comparison with the streamwise 
friction term/t  ti/K to this order. Moreover, equation 
(20b) implies that the streamwise heat conduction has 
been neglected. 

The second-order inner problem. 

hoLrr + O l x  = 0, (23a) 

( W o r O l x - - t l . t o x O l r ) + ( q J l r O o x - - o t J l X O O r )  = O l r u  

(23b) 

subject to the boundary conditions 

Y = 0 ,  W I = 0 ,  |  (24a,b) 

Y --. 0% ~P1r and (91 match with the outer solution. 
(25a,b) 

Thus, to the second-order approximation, the 
vorticity is still equal to Ou]Oy while the st reamwise heat 
conduction is still neglected in the energy equation. The 
nonlinear convection terms in equation (23b) are 
corrected for both the modified flow and temperature 
fields while the boundary conditions, equations (25a) 
and (25b), indicate the interaction between the inner 
and outer flow fields. 

The third-order inner problem. 

tIJ2rr + (92x =" - - t l Joxx ,  (26a) 

(~or(92x-Wox(92r)+(Wlr(gsx-Wlx(91y) 

+(W2r(9ox--~F:x(9or) = Ooxx+(92rr,  (26b) 

subject to the boundary conditions 

Y = 0, q"2 = 0, (92 = 0, (27a,b) 

Y--. oo, q"zr and 02 match with the outer solution. 
(28a,b) 

From the above equations, we observe that the 
vorticity term in equation (26a) has been corrected to 
include the contribution ofdv/Ox while the streamwise 
heat conduction term has been taken into account in 
equation (26b). Moreover, both the convection terms in 
the energy equation and the interaction between the 
outer and inner flow fields are further modified. 

The eigenfunctions q~,,, and (9,. satisfy the 
homogeneous problem given by 

t l /mrr + (grnX = 0, (29a) 

(Wor(9,,x-qJox(gmr)+((9oxqJmr-OorWm• = (9,.rr, 
(29b) 
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subject to the boundary condit ions 

Y = 0: W,,, = 0, O= = 0, (30a,b) 

y - o o o :  q ' m r = 0 ,  O r e = 0 .  (31a,b) 

�9 T h e  f i r s t -order  imwr  solution.  The solution of the 
first-order inner problem has been shown by Cheng and 
Chang [ I ]  to be of the form 

u/o = X (a+ I)/3fo(q), (32a) 

Oo = Xago(q), (32b) 

I 1 = Y X  t;t-2)13 (32c) 

wherefo(q) and 9o(q) are determined from 

f 6 ' + 2 g o + [ ( ) . - 2 ) / 3 ] ~ l g ' o  = 0, (33a) 

O~-) f~Yo+ [()-+ l) /3]fog'o = 0, (33b) 

with boundary  conditions given by 

go(0) = 1, fo(0) = 0, (34a,b) 

0o(oo) = 0, f~ (~ )  = 0. (35a,b) 

It follows from equation (32a) that  the velocities are 
given by 

Uo = OVO = Xt2~.-1)~aft(q), (36a) 
dY 

fiWo Vo= 
dX 

(XUt - 2)/3/3)[(2 _ ).),/fd _ (2 4- l)fo]. 

(36b) 

The asymptot ic  behavior of 9o(q) and fool)  are found 
from equation (33) to be of the form 

go(q) ~ e -  ~'~ (37a) 

fo(q) ~ fo(~176 + c x e -  ~ + c2q e -  ~'~ (37b) 

where "t = [ (2+  I)/3]fo(oO) withfo(oO) being a positive 
constant [1]. l tence, as tl ---' oo, we have 

q'o ~ Xt;'+ I)/3fo(O0) 4- O(e-~"l), (38a) 

(90 ~ O(e-V~), (38b) 

Uo ~ O(e-~'~), (38c) 

V o ~ - - [ ( 2 + l ) / 3 ] f o ( o o ) X  (a-2)/3, X >_- O. (38d) 

Equat ion (38d) shows that at the edge of the thermal 
layer, the vertical velocity is negative. This implies that 
fluid is entrained into the thermal layer, i.e. streamlines 
are all entering from the outside into the boundary 
layer. Note  that to the first-order theory, 2 = 0.5 
corresponds to the case of constant  surface heat flux 
[ l l .  

T h e  outer  solut ion 
By substituting equation (14) into equations (8) and 

(9), the following sets of equations are obta ined:  
Firs t -order  outer  problem. 

01~, = 0, (39) 

~ , r O , , , - - ~ , , , O , ,  = O. (40) 

Second-order  outer  problem. 

V2.~t +02~ = O, (41) 

(~llyO2x--~/lxO2y)-l-(~']2yOlx--~12xOl,) = V201 �9 (42) 

Nth-order  outer  problem. 

V 2 V , -  1 + O,x = 0, (n = 2, 3 . . . . .  N) (43) 

n--I 

= v 2 0 . - ,  - Z [~._j+,.,oj~-~,._.,.~o#], 
j = l  

( n = 2 , 3  . . . . .  N). (44) 

The boundary  conditions for all orders (n = 1,2 . . . . .  N) 
are:  

y = 0, 0, and ~,, match with the inner solutions 
at the edge of the thermal layer, (45a) 

y ~ ,  0 ~ = 0 ,  ~ k , y = ~ b , , = 0 .  (45b) 

Equation (39) shows that 01 is a function ofy  only and 
therefore must be equal to zero by equation (45b). 
Another  more general argument for 0~ = 0 is based 
on equation (40), which shows that 0~ is constant  along 
any of the first-order outer streamlines ~1- As pointed 
out earlier the first-order streamlines are entering 
the boundary  layer and none leaving it, ~b I may be 
originated from infinity or form closed loops in the 
region outside the thermal layer. Excluding the latter 
possibility, all are originated from infinity where 
01 = 0. Hence by equation (40) and the infinity condi- 
tion 0, = 0, we conclude that  01 = 0 everywhere. 
With 0~ = 0, the second order equation (42) reduces to 

~.I I ,02x- -~I  IxO2y = O, 

from which, by the same argument,  we conclude that 
02 = 0 everywhere. Hence, by induction, we find that in 
the outer region 

0~ = 0, everywhere for all n (46a) 

and 

V2~,, = 0 for all n. (46b) 

In other words, in the outer flow field both temperature 
per turbat ion and vorticity arc exponential ly small and 
a potential  flow prevails. The first-order outer solution 
is therefore determined by the equation 

V2~,I = 0, (47) 

subject to the infinity condit ion ~bl~ = tpl ), = 0 and the 
matching condit ion given by equation (38a), i.e. 

~q(x,O) = {fo ~ x x < 0 .  ~> 0, (48) 

The solution ofequat ion (47) with boundary  conditions 
(48) can be shown to be 

~1 = -- {c / [ (m- -  1)r m- 1]}sin [m(~--  A) + A] (49) 

where r = (x 2 _{_y2)1/2, A = tan- lO' /x) ,  c = [(1 +2)/3]  
[fo(m)/(sin ran)] and m = (2 -2 ) /3 .  It follows from 
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equation (49) that 

u I --" [c cos m(n-A)] / ( r" ) ,  (50a) 

v I --- - [ c  sin m(~-A)] / (r") .  (50b) 

The second-order imzer solution. The governing 
equations and boundary conditions for the second- 
order inner problem are given by equations (23) and (24) 
with the matching condit ion 

~ (X, co) = DX ~-2~t3, (51a) 
0Y 

Or(X, oo) = 0 (51b) 

where D = --[(1 +) . ) /3]cot{[() .+ l)/3]n}fo(oO). Note  
that equations (51) are obtained from equations (50a) 
and (46a). It can be shown that the second-order inner 
problem admits similarity solutions of the form 

Wt = Df~(q), (52a) 

01 = DX tz~- l)130t(q ) (52b) 

wheref l (q  ) and Or(q) are determined from 

ft" + [ (2 ) . -  1)/3]el + [O- -  2)/3]qe't = 0, (53a) 

9'i + [(2 + 1)/3]fo9'~ - [ (2 ) . -  1)/3]fdg, = ).Oof;, (53b) 

subject to the boundary  conditions 

A(0) = 9d0) = 0, (54a,b) 

f i ( co )  = 1, Or(co) --= 0. (55a,b) 

F rom equations (5 I) and (52) it is of interest to note that 
q ' t (X,Y)  = O t ( X , Y ) = O  for the special case of 
2 = 0.5, since D = 0 for this case. The asymptotic  
behavior  of91(q) andf l (q)  can be found from equations 
(53) and (55) which gives 

q.-+oo, g l ( q ) ~ e - r "  and f l ( q ) ~ , l + C  (56a,b) 

where C is a constant (whose value depends on 2) and 
can be obtained only after equations (53)--(55) have 
been solved numerically. 

Thus, to this order, the inner expansion for the 
stream function is 

~,(x, y) = d[q'o(X, Y)+~'Vdx,  l O + . . . ]  

= ~2[X~a+ t)/afo(q)+~Dfl(q)+ . . . ] .  (57) 

It follows that as q --, co, 

r y) - - -  ~ { x  c~+'"%(oo) 

+ e D [ X ( a - 2 I I 3 y w C ] + . . . }  (58) 

where we have made use of equation (56b). Equation 
(58) is to be matched with the outer expansion in the 
next section. 

Second-order outer solution. The governing equation 
for the second-order outer problem is 

V2~2 = 0 (59) 

with the boundary  conditions 

[DC, x >1 0 (60a) 
O2(x'O) = '~(0, x < 0 (60b) 

and the infinity conditions 

,d,2~(x, co) = ~sr(x, co) = 0 (61a,b) 

where equat ion (60a) is obtained by matching with the 
inner solution. It is easy to show that  the solution to 
equation (59) with the boundary  conditions (60)and 
(61) is 

I//2(x,y ) = DC[I  - ( A / n ) ]  = DC[I - (1 / r r ) t an -  l(y/x)i, 
(62! 

Expanding equation (62) for small y, we have 

t) 2(x, y) = D C [ 1 - (1/n)(y/x) + . . . 1  

= OC[l - - (eY / rcX)+ --.1. (63) 

Thus the velocity u (as y -~ 0) to the second order is 

u = ~2 [ux(x, y) + ~u2(x, y) + . . . ]  

= _es [ ( ) .+  1)/3]cot{[(2+ l)/3]rr}fo(co)x c~-2~t3 

+ e3{[0 . + 1)(2 - 2)/9]fo(co)x ~ -  5)/3 y 

--(OC/n)( l/x)} + O(e4). (64) 

The third-order inner solution. The third-order  inner 
solution, as determined from equations (26) and (27) 
must also satisfy the matching condit ion at Y ~ co 

O,  ---, 0, (65a) 

fiW2 = [(I +2)(2-2) fo(oo)rXta-s) /3 /9]  U2 = OY 

- ( D C / n ) ( I / X )  (65b) 

where equation (65b) is obtained by matching with 
equation (64). Equations (26) with the boundary  
conditions (27) and (65) admit  similarity solutions of 
the form 

W2 = X -c~+ t~/3f2(q), (66a) 

0 2 = X ta- 2)/3as(r/) (66b) 

where t I is the similarity variable given by equation 
(32e), andfs(q)  and 9201) are determined from 

.17 + I-(;.- 2)/3](o2 +,lO~) 

= -- [(2 - 2)/31{[(2 + 1)/3] fo + (2--  l)t/f d 

+[().--  2)/31qsf(~'}, (67a) 

O~. + ][( ) -+ 1)fog~ --(2--2)fd921 

- ; . f ~ o o -  [(1 + ).)/31AO'o = ;.(1 - 2)0o 

+ [(I --  22)().-- 2)/3],19'o - [0- - 2)/312u(g'0 + t/e~) 

+ [(22. - 1)/3] [( 1 + ).)/3] 2 

x cot2{[0 .+  l)/3]n}foS(oo)f;o~, (67b) 

subject to the boundary  conditions 

q = O :  f s = O ,  g s = o ,  (68a,b) 
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q ~ oo :f~ = [(1 +).)(2--).)/9]fo(oO)q--(DC/n); 

02 = 0. (69a,b) 

Eigent'alues and eiget~mctions 
In this section, we shall obtain the eigenvalues c~,. and 

the eigenfunctions q',, and Or,. To this end, we note that 
the parameter  Ra in equations (8}-(11) is an artificial 
parameter  that can be eliminated from the mathe- 
matical problem by the following transformation : 

�9 Ip = g 3 t f f ,  0 = e 3 2 / l a + l ) O  (70a,b) 

x = ~3/(~+~)g, y = e3/(~+1)37 (70c,d) 

where e = (1/Ra) t/3. In terms of the new variables, 
equations (8)-(11) become 

V2ff+Oz = 0 (71) 

ffr-O~--ff~-O;-= 920 (72) 

with boundary  conditions given by 

3 7 = 0 :  t ~ = 0 ,  0 = : ~  a .2>~0, (73a,b) 

)7 - ,  oo : t~- = 0, 0 = 0. (74a,b) 

An inspection of equations (71)-(74) shows that  the 
parameter  e (or Ra) is completely eliminated from the 
problem. In other words, we have 

t~ = ff(ff,.f), (75) 

0 = 0(:~,.f), (76) 

which imply that the parameter  e should not  appear  in 
the solution when it is expressed in terms of the new 
variables. This is the so-called "eliminabili ty principle". 

We now consider the terms e~+2~, ,  and ~-0 , ,  in 
equations (I6). These terms can be considered at  
present to be the typical terms in the series expansions. 
We assume that these terms are of the following 
similarity forms : 

8:tm + 2qJ = ~ + 2xofm(q), (77) 

e " O ~  = e " x r  o~(q) (78) 

where q = x(a-~)/3y]e and tr and F are constants to be 
determined. According to the eliminability principle, 
equation (16) in terms of~7, 0,..~ and)7 should not  contain 
the parameter  e. We first note that the similarity 
variable t 1 in terms of ~ and 37 becomes 

I' 1 = 2 (~ --  2)13)7  (79) 

where e indeed disappears.  Next, we rewrite the series 
(16a,b) in terms of if, (7, :~ and .9 to give 

e3~ = .. .e~+2qs,,,  = . . .  

8:~. + 2 + [3o/(a + ~)L~of~()l), (80a) 

~3~./( , t  + 1 1 ~  = . . .  8 : t ~ )  m = . . .  

~,.+t3r/(x+ ~n.Ug,.(q). (80b) 

The parameter  e will not appear  in the above equations 
if 

3 = c~,,,+ 2+[3~r/() .+ 1)], (81) 

3)./0.+ 1) = o,,,+ E3r ' /0.+ 1)]. (82) 

Solving equations (81) and (82), we have 

a = (1 -- :~,,)().+ 1)/3, (83) 

r = ) . -  [(1 + ).) :~,./3]. (84) 

Thus, typical terms in the series of equation (16a) and 
(16b) are given by 

W,, = x (t - ~m~(~ + 1):3f,,Ol) ' (85) 

0,~ = x a-  t(~ + 1)~-mO,~(tl). (86) 

Letting ~,~ = O, I, and 2, in equations (85) and (86), a 
linear combinat ion of these terms gives, 

O = 82[Ao x(~+ l)/3fo(q)+eA1fl(q) 

+~2A2x-(X+ 1):3f2(q)+ . . .  

+A, ,e~mxm-~) (x+ l)/31f,,(q)+ . . . ] ,  (87a) 

0 = [BoxaOo(q) + eB~x (2~- n/3gl(q) 

4- 82 B2 xO'- 2)13 9 2(q) + . . .  

+ Bms=~x;t- [(l + ~)~talgm(q) + . . . ]  (87b) 

where Ao, Ax, Bo and B~, are constants to be 
determined. Note  that the first three terms in equations 
(87) agree with equations (29), (49), and (63) ifA o = A 2 
= B o = B 2 = 1 and A~ = B~ = D. The constants A,, 
and B,, in equations (87) cannot  be determined 
presumably due to the leading edge effects. 

Substituting equations (77) and (78) with a and F 
given by equations (83) and (84) into equations (29)- 
(31), we have the following eigenvalue problem:  

f~  + {).-- [().+ 1)~3]}9~+[() . - -2) /3] ,19 '~  = 0, (88) 

O~, + [()- + 1)/3]fo9',, --  {2--  [(2 + 1):~,ff3] }fifo,. 

- - ) . o o f ' - -  [(:~,,-- 1)().+ 1)/3]g~)f,,, = 0 (89) 

subject to the boundary  conditions 

' f,,(0) = g,~(0) = 0, (90a,b) 

f,~(oo) = 0,,(oo) = 0. (91a,b) 

As in the classical boundary  layer theory it will now be 
shown that Oq%/OX and g|  or 6ULo/OY and 
gOo/OY satisfy equations (29) and thus are the eigen- 
functions, provided that  they also satisfy the boundary  
condit ions (30) and (31). Fo r  this reason, we first 
differentiate equations (20) with respect to X and 
find that  the resulting equations are identical to 
equations (29) if 

= OX = X(~-2)/3{[()'+ 1)/3]fo(q) 

+ [(2--  2)/3]fd(q)}, (92a) 

Om gOo = a X  = X a -  t{)'g~ + [(2-2)/3]q9~) }. (92b) 

Compar ing  equations (92) with equations (85) and (86), 
one obtains 

ctm = 3/ (2+ 1), (93a) 
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f,, = [().+ l)/3]fo(,1)+[().-2)/3]f~(q), (93b) 

9,,1 = 2go01) + [(2 -- 2)/3]qg'o(q). (93c) 

Equations (93a,b) satisfy boundary  conditions (90) and 
(91) only when 2 = 0 .  Thus, when 2 = 0 ,  the 
eigenfunctions and eigenvalues are 

W,. = X -  21a [(fo(,1)/3 ) _  2 , i f  d(,1)], (94a) 

| = X-~[--]~/g~],  (94b) 

ct,, = 3. (95) 

Similarly, it can be shown that although ~q'o/aY and 
~| satisfy equations (29), they do not satisfy 
boundary  conditions (30) and (31) and thus are not 
eigenfunctions of the problem. Other eigenvalues and 
eigenfunctions must be found by the numerical 
integration of equations (88)-(91). 

Results and discussion 
Numerical solutions for the eigenvalue problem 

given by equations (88}-(9I) were carried out for 2 = 0, 
0.1, 0.5, 1.0 and 1.5. It was found that for 2 = 0, two 
eigenvalues with ctm = 2 and 3 exist. This implies that 
the third-order problem for this case contains an 
indetermined constant  due to the leading edge effects. 
The numerical solutions also found that no other 
eigenvalues exists for 2/>0.1.  Thus, for 2 = 0 ,  
numerical solutions were carried out only to the 
second-order while for other values of 2, numerical 
solutions were carried out to the third-order. The 
results for g',(0) and fi'(0) (with i = 0, 1, 2) andfo(oO ) for 
selected values of 2 are tabulated in Table 1 for future 
reference. The discussion of the first-order (boundary 
layer) results has been presented in the previous work 
[1] and will not  be repeated here. 

The second-order theory. The variations of g ~, g'~,fl 
and f ;  versus I1 at different ). are presented in Figs. 1--4. 
Note that for the special case of). = 0, the second-order 
equation and boundary  conditions for g~ as given by 
equations (53b), (54b) and (55b) become a linear 
homogeneous problem whose exact solution is 

g~ = 0 and g'l = 0. (96a,b) 

It follows from equation (53a), (54a), and (55a) that 

f~ = 1 and f l  = t l -  (97a,b) 

Comparing equation (97b) with equation (56b), one 
can conclude that C = 0 for ). = 0. Equations (96) and 
(97a) are shown as horizontal lines in Figs. 1, 2 and 4 
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Flo. 3../'1 versus 9 at selected values of 2. 

Table 1. Values of g',{O),f:(O) andfo(oO ) 

2 = 0  2=0.1 2=0.5  2 =  1.0 2 =  1.5 

95(0) -0.4299 -0.5262 -0.8164 -- 1.099 - 1.345 
g't(0) 0 -0.1165 -0.3154 -0.4207 -0.4735 
g~(0) - 0.2281 0 0.2274 0.9424 
f~(0) 1.053 1.064 !.141 1.251 1.354 
f~(0) 1.0 0.9108 0.7413 0.6182 0.5257 
f~(0) - 0.07617 0 0.2292 0.6908 
fo(oO) 2.813 2.529 1.885 1.502 1.284 
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FIG. 4.f[ versus q at selected values of 2. 

while equation (97b) is shown as a straight line in Fig. 3. 
Note that equations (96) imply that the second-order 
corrections in temperature and heat flux are zero for 
2 = 0 because to the second order approximation, the 
correction to the temperature, | is solely due to the 
convection effect as represented by the forcing term 

qJ t rOox-qJ lxOor  

in equation (23b). When 2 = 0, Oo and WI are both 
constant along the curves q = constant  [see equations 
(32b) and (52a)], and hence the above convection term 
vanishes. This, coupled with the boundary  conditions 
O1 = Oat Y = 0[equation(24)]  andO1 --* 0,as Y ~  oo 
[equation (51b)] leads to the result that O1 = 0 for 
2 = 0 .  

As discussed earlier, the second-order corrections for 
the stream function and temperature, q ' l  and O1, are 
also zero for ). = 0.5 since D = 0. For  completeness, 
however, the values of gx, g'l ,fl ,  and f [  as determined 
from equations (53)-(55) for ). = 0.5 are also plotted in 
Figs. 1-4, although they are of no physical significance. 
For other non-zero value of 2, Figs. I and 2 show that 
the second-order corrections in temperature and its 
slope at the wall are all negative while Figs. 3 and 4 show 
that the values off1 and f [  are all positive with f l  varying 
linearly with q as q --. oo as indicated by equation (56b). 

The third-order theory. Figures 5-8 show the third- 
order corrections, g2, 9'2,.I"2 andf~ versus q for ). = 0.1, 
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0.5, 1.0 and 1.5. As shown in Fig. 5, the values ofg 2 may 
be positive or negative depending on the values of 2 and 
q. Figure 6 shows that g~ (0 )<0  for 2 <0.5,  
and g~(0) > 0 for 2 > 0.5. For  ). >_- 0.5, the values off2 
andf~ are all positive as shown in Figs. 7 and 8. Note 
thatf~ increases linearly with q as q ~ oo (see Fig. 8), 
which is dictated by the boundary  condition (69a). 
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FIG. 9. Dimensionless horizontal velocity profiles for 2 = 0.1 : (a) Ra~ = 50 and (b) Ra~ = 200. 

tligher-order corrections for  the velocity field. With 
the aid of equations (16a), (29a), (52a) and (66a), the 
inner expansion for the stream function is given by 

.~(x, y) = (~/~x){ fo('1) -- e~[(;. + 1)/31 cot [n(;. + I)/31 

x ./'o(OO)./'101) + ~2f2(,1) + O(~3)} (98) 

where sx - Ra~ 1/3 with Ra~ - p| Too)~/#:( 
denoting the local Rayleigh number. It follows that  the 
horizontal velocity is 

z2ft~/ct = {f~(t/)-  sx[(). + l) /3]cot In(). + 1)/3-1 

(oo)f~(,1) + r f~(tl) + O(~)}. (99) 

Equations (98) and (99) are for ). > 0.1. Fo r  3. < 0.1, 
the third-order  terms in these equations contain  an 
undetermined constant  as discussed earlier. Since 
]'~(tl) > 0 and fo(oO) > 0, the second-order correction 

in u is zero for 2 = 0.5, negative for 2 < 0.5 and positive 
for 2 > 0.5. On the other hand, the third-order  correc- 
tions in u are almost always positive except for small tl 
and 2 < 0.5. 

Figures 9(a) and 9(b) show the representative 
horizontal  velocity profiles for 2 < 0.5 at two different 
Rayleigh numbers,  as obta ined from the first, second, 
and third-order  theories. For  the second-order theory, 
the horizontal  velocity decreases from a positive value 
at the wall (i.e. a velocity slip) and approaches a negative 
value at the edge of the boundary  layer�9 A comparison 
of Figs. 9(a) and 9(b) indicates that  the boundary  layer 
approximat ions  become increasingly accurate as the 
value of Rax is increased. The representative horizontal  
velocity profiles for 3. < 0.5 are presented in Fig. 10. The 
major  difference between this figure and Fig. 9 is that  
the horizontal  velocity at the edge of the boundary  layer 
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obtained from the second-order theory in this figure are 
posi t ive  r a t h e r  t h a n  nega t ive  as in Fig. 9. 

Higher-order corrections to temperature and heat 
flux. With the aid of equations (32b) ,  (52b) ,  (66b) and 
(16b) ,  the inner expansion for temperature is 

(cr- 

= goO1)--e~[(2+ 1) /3 ]co t [ r~0 .+  1)/3] 

x fo(~176 + e2g2(,1) + O(e3)(O. 1 ~< ;. < 2) (100) 

wh ich  is p lo t t ed  in Figs�9 1 l(a) a n d  1 l (b)  for  Ra. = 50 
wi th  2 = 0.1 a n d  ). = 1 respect ively.  I t  is s h o w n  tha t  all 
h i g h e r - o r d e r  co r r ec t i ons  in  t e m p e r a t u r e  are  sma l l  even  
a t  smal l  va lue  of  Rayle igh  n u m b e r .  

T h e  Nusse l t  n u m b e r  Nu~ = h~/k c a n  be o b t a i n e d  
from the differentiation of equation (100) which yields 

NuJ(Ra~/3) = --  {g~(0)-- ~x[(). + 1)/3] 

x fo(oO)cot [n(;. + 1)/3]g~(0) 

(lo0 

E q u a t i o n  (101) was c o m p u t e d  for  va r ious  local  
Rayle igh  n u m b e r s  a n d  2, a n d  the  resul t s  are  given in 
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Flo. 12. Local Nusselt numbers versus local Rayleigh numbers 
for selected values of 2. 

Table 2 for future reference. It is noted from the table 
that for the case of). = 0, the first (boundary layer) and 
second-order theories give identical results for the local 
Nusselt number because of the fact that gt = g't = 0. 
For the case of). = 0.5, all three theories give identical 
results for the local Nusselt number because cot Dr/2] 
= 0 and g~(0) = 0. For other values of 2, the value of 
Nu~ obtained from the second-order theory may be 
higher than or lower than the boundary layer theory 
depending on whether ), > 0.5 or 2 < 0.5, because the 
second term in equation (101) changes signs at 2 = 0.5. 
On the other hand, the value of Nux obtained from the 
third-order theory is always higher than the boundary 
layer theory. A comparison of Nusselt numbers 
obtained from the first, second and third-order theory is 
present in Fig. 13, which shows that the boundary layer 
theory is quite accurate even for moderate values of 
Rayleigh number; the accuracy of the boundary layer 
theory decreases as the Rayleigh number is decreased, 
and as 2 is increased from ), = 1. 

3. CONCLUSIONS 

The following general conclusions can be drawn 
from the analysis : 

(1) There are in general three effects contained in the 
higher order approximations, namely, fluid entrain- 
ment, upward-drift-induced frictional force, and 
streamwise heat conduction. The resultant effects are a 
slight increase in the slope of the temperature profile 
near the wall (with a corresponding increase in surface 
heat flux) and a modification of the velocity near the 
edge of the boundary layer where the velocity of the 
inner flow matches with those of the outer flow. 

(2) The temperature perturbation inside the boun- 
dary layer decays exponentially toward the outer edge 
of the layer. There is no heat transfer between the 
boundary layer and the region outside the boundary 
layer. An isothermal fluid motion is induced, however, 
in the outer region. 

(3) The sole interaction between the boundary layer 
and the outside region is by way of fluid entrainment. 
The entrainment is from the outside into inside the 
boundary layer along the edge of the boundary layer. 

(4) The temperature distribution inside the boun- 
dary layer is modified by the convection of the 
entrainment induced flowin the second and third-order 
theory, as well as by the streamwise heat conduction in 
the third-order theory. 

(5) The higher-order theory has a larger effect on 
velocity profiles and a smaller effect on temperature 
profiles. 

(6) The local Nusselt numbers as obtained from the 
boundary layer theory for 2 = 0.5 are accurate to the 
third-order while those for 2 = 0 are accurate to the 
second-order. For other values of 2, the boundary layer 
theory also gives accurate results for the local Nusselt 
numbers even at moderate values of Rayleigh numbers. 
The accuracy of the boundary layer theory decreases as 
the Rayleigh numbers decrease and as 2 increases from 
2 = 0.5. 
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D E V E L O P P E M E N T S  A S Y M P T O T I Q U E S  P O U R  LA C O N V E C T I O N  N A T U R E L L E  PRES 
D ' U N E  S UR F AC E  H O R I Z O N T A L E  ET I M P E R M E A B L E  DANS U N  MILIEU P O R E U X  

R6sum~--Le probl6me de la convection naturelle stationnaire dans un milieu poreux adjacent a une surface 
chaude, horizontale et imperm6able, avec une distribution de temp6rature pari~tale 7,, = ~'~ + A:~ ~ pour  :~ 
> 0 et T,, = ?~, ~i .~ < 0 (0 < ). < 2), est ~tudi6 par la m~thode des d6veIoppements asymptotiques.  Le petit 
param~tre dans les s~ries de perturbation est rinverse de la puissance un tiers du hombre de Rayleigh. Pour  le 
premier ordre du probl6me interne, les 6quations de base se r6duisent aux approximations de la couche limite 
qui a d~ja ~t~ r~solue par les auteurs. Les effets de rentra inement  du fluide, de la conduction thermique et du 
frottement induit sont  pris en consid6ration dans la th~orie du second et du troisi~me ordre pour  laquelle on 
obtient les solutions de similarit6. On  pr6sente les r~sultats num~riques pour les profils de temp6rature et de 
vitesse et pour le nombre  de Nusselt local ~. diff~rents nombres de Rayleigh locaux et diff6rentes distributions de 
temp6rature pari~tales donn6es. On  trouve que les hombres  de Nusselt  locaux obtenus par la th6orie de la 
couche limite pour  2 = 0,5 sont  precis jusqu 'au  troisi~me ordre, tandis que ceux pour 2 = 0 sont  pr6cis au 
second ordre. Pour  d 'autres valeurs de 2, la th6orie de couche limite sous-estime 16g~rement le nombre  de 
Nusselt local ; la pr6cision de la th~orie de couche limite d6croit lorsque le nombre  de Rayleigh diminue et 

Iorsque 2 croit au dessus de 0,5. 

ANGEPASSTE A S Y M P T O T I S C H E  E N T W I C K L U N G E N  FOR DIE FREIE K O N V E K T I O N  
OBER EINER UNDURCttL.~ ,SSIGEN WAAGERECHTEN O B E R F L ~ C H E  IN EINEM 

P O R O S E N  M E D I U M  

Zusammenfassung- -Der  Mechanismus der station/iren freien Konvektion in einem por6sen Medium fiber 
einer waagerechten undurchl/issigen Heizfl~che mit der Temperaturvertei lung ~r = ~ r  + A~? ~ (0 ~< 2 < 2) ffir 
x >/0 und T,  = T~o ffir x < 0 wird mit Hilfe der Methode der angepal3ten asymptotischen Entwicklungen 
untersucht. Es wurde herausgefunden, dab der kleine Parameter  in den Stfrungsreihen umgekehrt  
proportional der Rayleigh-Zahl hoch ein Drittel ist. Ffir das innere Problem erster Ordnung  sind die 
kennzeichnenden Gleichungen auf  die Grenzschichtn/iherungen zurfickgeffihrt, die kfirzlich von denselben 
Autoren gel6st wurden. 

Die Einflfisse des Entrainments,  der Wfirmeleitung in Str6mungsrichtung und der durch die Aufwfirtsdrift 
hervorgerufenen Reibung werden in der Theorie zweiter und dritter Ordnung  berficksichtigt, ffir die sich 
,X.hnlichkeitsl6sungen ergeben. Ffir das Temperatur-  und Geschwindigkeitsprofil in Str6mungsrichtung 
werden numerische Ergebnisse vorgestellt, ebenso ffir die 6rtliche Nul3eltzahl bei verschiedenen 6rtlichen 
Rayleigh-Zahlen und unterschiedlichen aufgeprfigten Wandtermperaturverteilungen. Es zeigt sich, dab die 
mit  der Grenzschichttheorie f/ir 2 = 0,5 erhaltenen 6rtlichen Nul3eltzahlen mit denen der dritten Ordnung  
fibereinstimmen, w/ihrend diejenigen for 2 = 0 mit denen der zweiten Ordnung  fibereinstimmen. Ffir andere 
Werte yon 2 ergibt die Grenzschichttheorie geringff.igig zu kleine 6rtliche NuBelt-Zahlen; die Genauigkeit  der 
Grenzschichttheorie n immt  in dem MaB ab, wie die Rayleigh-Zahl kleiner und wie 2 yon 2 = 0,5 an grfBer 

wird. 

CPAII[HBAEMblE ACHMHTOTHqECKHE PA3YlO)KEHHfl ,/lJ],q CBOBO~HOI7[ 
KOHBEKLIHH Y HEFIPOHHIIAEMOfl FOPH3OHTA.rlbHOfl IIOBEPXHOCTH 

B I-IOPHCTOITI CPE~E 

AaHoTauH~--3a~atia CTaLInonapHoii CBO60.tlnOH KOHBeKIIHI[ B rlopncToii cpe.~e y ropltBonTa~IbnOii 
nenpomlllaeMo~ narpeBaeMofi noBepXHOCTII, xapaKreplt3y}oLueiic~ pacnpe/lellenneM TeMnepaTyp 
]'~ = T~ + AX ~ (0 _< 2 < 2) nptt .r > 0 n ~Fw = T~ npn .~ < 0, ncc.ae~lyegca r,~eTO;1OM cpamnBaexmlx 
aCltMnTOTHqeCKHX pa3Jlo~<eHuii. Haii/leuo, qTO Ma21blil napaMeTp paBeH o6paTtfOMy qncny P3~qe~ B 
cTeiletnl 1/3. ~ n s  BllyTpettHeit 3a~anH nepBoro nopaaza  oc~louubze ypaBHeHlia CBO~STCS K nplt6~11[x~e- 
HIIRM norpailuqrioro c~1oR, KoTOpble peLUeHbl aBTOpaMtl panee. YB21eqetllle 7KtL~.KOCTH, Ten~'lonepefla~a 
no nanpaB.rlentll-o Teqoml~ n TpeHlie, Bbl3BaHUOe nanpaB~eHUblM BBepx ,~pehqbo.M, ytllITblBatOTC~l 
3aBHCIIMOCT~:IMU BTOpOI'O It rpeTbero 11op~/1Ka, /UI~ KOTOpblX no.qyqeHbl aBTOMO~e.'IbHble perilettllfl. 
Flpe.g.cTaB.qenbi qtlc~qetltlblO pe3y.rlbTaTbl rio iqpod~iLagM rexlnepaTyp 1f CKOpOCIII rio llallpaB.qelnlio 
Teqellll~l, a TaKxe ,'lOKaJlbltOMy tlncJly nycce.'~bra llptl pa3JIntlllblX 3Hatlelnl~:lX JloKaabHOrO ttnc,qa 
P3aea ~1 pa3flnqUblX 3aB.atlnblx pacnpe,ae.aenlt:~x reMnepaTyp clenKit. Hafiaeno, tliO 3natleml~l 
,'lOKa.'IbnOFO tlHC.rla nycceabTa,  noJlytleHHble 113 Teopull noFpaHlttlHOI-O CJ1OR, ~BJI~IIOTC~ TOttUblMIl .110 
rpexbero nopaz~ga np~t 2 = 0,5 n ~0 Broporo nopaaga  np~ ). = 0. Ilp~l apyrnx  3na'~ennax 2 nony,m~orca 
IleCKO.qbEO 3atllDl.:enltble 3HatleHU~l JIOKaJlbnOI-O tlHCJla nycce.ab-ra; "l-OqnOCTb Teoputl noFpanlltlnoFo 

c.qog yMenblllaelclt no Mepe yMellbllleltlDl qnc.rla P3,aea I1 yBeJluttellltll 2 Bbnlle 0,5. 


